Index

AACE RP29R-03 FORENSIC SCHEDULE ANALYSIS
Generally, 17:1 to 17:7
Analysis evaluation, 17:5
Choosing method, 17:6
Method implementation, 17:4
Organization and scope, 17:2
Review, 17:7
Source validation, 17:3
Summary, 17:1

ABANDONMENT
No damage for delay, abandonment exception to contractual provisions, 5:7

ACCELERATION
Generally, 3:8
ASCE standard ANSI/ASCE/CI 67-17 schedule delay analysis, 15:9
Concurrency, 3:14

ANALYSIS AND METHODS
Generally, 6:1 et seq.
As-built critical path category generally, 6:5
As-Built Critical Path, this index
ASCE Standard ANSI/ASCE/CI 67-17 Schedule Delay Analysis, this index
Categories of schedule delay analysis methods, 6:2
Collapsed as-built category generally, 6:4
Collapsed As-Built, this index
Fact pattern, 6:8
Guidelines for schedule delay analysis checklist, 13:1
details, 13:2
Impacted as-planned category generally, 6:6
Impacted As-Planned, this index

ANALYSIS AND METHODS—Cont’d
Method Comparison Study, this index
Time impact analysis (TIA) category generally, 6:3
Time Impact Analysis, this index
Total time category generally, 6:7
Total Time, this index

AS-BUILT CRITICAL PATH
Generally, 6:5, 9:1 to 9:9
Case summaries, 9:9
Example implementation, 9:6, 9:7
Major delay types, treatment of, 9:8
Negative treatment, 9:5
Positive treatment, 9:2 to 9:4

ASCE STANDARD ANSI/ASCE/CI 67-17 SCHEDULE DELAY ANALYSIS
Generally, 15:1 to 15:10
Acceleration, 15:9
Changing schedules after the fact, 15:8
Chronology of delay, 15:5
Concurrent delay, 15:6
Critical path, 15:2
Early completion, 15:4
Float, 15:3
Responsibility for delay, 15:7
Review of schedule delay analysis standard, 15:10
Summary, 15:1 et seq.

AS PLANNED
Impacted As-Planned, this index

BONUS PAYMENTS
Generally, 3:7

BURDEN OF PROOF
Generally, 3:1
BURDEN OF PROOF—Cont’d
Contemporaneously granted CPM time extensions, 3:4
Delay to critical path, 3:2
Dynamic CPM, 3:3
Updated CPM schedules, 3:3

CAUSATION
Disruption, 18:2, 21:2

COLLAPSED AS-BUILT
Generally, 6:4, 8:1 to 8:10
Case summaries, 8:10
Cautionary tale (Youngdale), 8:2
Contemporaneous updates, using, 8:8
Contractor delays, removing, 8:6
Major delay types, treatment, 8:9
Negative treatment of method, 8:3
Owner delays, removing, 8:5
Positive treatment of method, 8:4
Stepped removal, 8:7
Traditional implementation, 8:5

COMMON LAW
Exceptions to contractual provisions.
No Damage for Delay, this index

COMPARISON METHODS FOR PROVING DISRUPTION
Disruption, 23:1 to 23:4

COMPENSABLE DELAY
Generally, 1:2

COMPLETION
Early completion, right to, 3:6
Waiver of completion, 3:16

CONCURRENCY
Generally, 3:9 to 3:14
Acceleration, 3:14
Apportionment, 3:13
ASCE standard ANSI/ASCE/CI 67-17 schedule delay analysis, 15:6
Float, delay absorbing, 3:11
Noncritical delay, 3:11
Offsetting delay, 3:12
Pacing, 3:10

CRITICAL PATH METHOD (CPM)
Generally, 2:1 to 2:37
Actual progress. Progress updating, below
Adjusting contract completion date to account for excusable delay, 2:34
After-the-fact corrections to CPM schedules, 2:37
As-built
Generally, 2:7, 6:5
As-Built Critical Path, this index
As-planned vs. as-built, 2:5
Assigned constraints, 2:21
Burden of Proof, this index
Calendar constraints, 2:22
Categories of scheduling constraints
Generally, 2:23 et seq.
contractual constraints, 2:25
physical constraints, 2:24
preferential sequencing constraints, 2:26
Collapsed as-built/but for, 2:8
Completion date, adjusting to account for excusable delay, 2:34
Constraints
Categories of scheduling constraints, above
Means of schedule constraint, below
Contractual constraints, 2:25
Cost loading, 2:27
Critical path
Generally, 2:11
expiration of contract time, delays after, 2:13
float on the critical path, 2:15
longest path or zero float path, 2:12
resolution, 2:14
Evolution of methods over time, 2:9
Excusable delay, adjusting contract completion date to account for, 2:34
Expiration of contract time, delays after, 2:13
Float
generally, 2:10
CRITICAL PATH METHOD (CPM) —Cont’d
Float—Cont’d
critical path, float on, 2:15
longest path or zero float path, 2:12
History, 2:1 et seq.
Impacted as-planned, 2:6
Incorrect dates, updating schedule to reflect actual progress, 2:31
Intermediary milestones, 2:28
Leads and lags, 2:18
Logic and updates generally, 2:16 et seq.
after-the-fact corrections to CPM schedules, 2:37
Categories of scheduling constraints, above
Means of schedule constraint below
Progress updating, below responsibility for failing to update schedules, 2:35
subcontractor harmed by owner changes, 2:36
Long duration activities, 2:19
Longest path or zero float path, 2:12
Means of schedule constraint generally, 2:17 to 2:22
assigned constraints, 2:21
calendar constraints, 2:22
leads and lags, 2:18
logic ties, 2:17
long duration activities, 2:19
open-ended activities, 2:20
Open-ended activities, 2:20
Origins, schedule delay analysis methods generally, 2:3 to 2:8
as-built critical path, 2:7
as-planned vs. as-built, 2:5
collapsed as built/but for, 2:8
impacted as-planned, 2:6
time impact analysis, 2:4
Origins of CPM, 2:2
Owner changes, subcontractor harmed by, 2:36
Physical constraints, 2:24

CRITICAL PATH METHOD (CPM) —Cont’d
Preferential sequencing constraints, 2:26
Progress updating generally, 2:29 to 2:34
actual progress, updating schedule to reflect generally, 2:30
incorrect dates, 2:31
retained logic vs. progress override, 2:32
excusable delay, adjusting contract completion date to account for, 2:34
retained logic vs. progress override, 2:32
revising schedule to reflect changes and revisions to plan going forward, 2:33
Resolution, 2:14
Resource loading, 2:27
Responsibility for failing to update schedules, 2:35
Retained logic vs. progress override, 2:32
Subcontractor harmed by owner changes, 2:36
Time impact analysis, 2:4
Updates
Progress updating, above responsibility for failing to update schedules, 2:35

DAMAGES
Delay Damages, this index
Disruption, 18:5 to 18:9
Liquidated Damages, this index
No Damage for Delay, this index

DAUBERT ISSUES
Generally, 1:5

DELAY
Disruption distinguished, 18:3

DELAY DAMAGES
Generally, 4:1 to 4:14
Breach damages, 4:4
Common types generally, 4:6 to 4:11

Index-3
DELAY DAMAGES—Cont’d
Common types—Cont’d
equipment costs, 4:9
extended project overhead costs (direct overhead), 4:10
labor costs, 4:7
material costs, 4:8
unabsorbed home office overhead costs (indirect overhead), 4:11
Disruption vs. delay, 4:12
Equipment costs, 4:9
Equitable adjustments vs. damages generally, 4:2
breach damages, 4:4
equitable adjustments, 4:3
Extended project overhead costs (direct overhead), 4:10
Labor costs, 4:7
Liquidated damages, 4:13
Material costs, 4:8
Mitigation of damages, 4:5
Overhead
extended project overhead costs (direct overhead), 4:10
unabsorbed home office overhead costs (indirect overhead), 4:11
Proof, 4:14

DEPARTMENT OF LABOR BULLETIN 917
Disruption, 21:37 to 21:39

DISRUPTION—Cont’d
Productivity factors, 21:12 to 21:20
generally, 21:1 to 21:39
combining factors, 21:10
comparable and appropriate study, 21:5 to 21:9
Department of Labor Bulletin 917, 21:37 to 21:39
industry and academic studies, 21:11
lack of contractor-caused inefficiencies, 21:4
Mechanical Contractors Association of America factors, 21:12 to 21:24
National Electrical Contractors Association factors, 21:25 to 21:30
proof of causation, 21:2
Proof of disruption, 18:4
Similar projects compared, 20:6 to 20:8
Total cost, 20:20 to 20:27
Visual observation judgment, 22:37 to 22:10

EARLY COMPLETION
Right to, 3:6

EARNED VALUE
Disruption, 20:2 to 20:5

EQUIPMENT
Delay damages, equipment costs, 4:9

EQUITABLE ADJUSTMENTS
Delay Damages, this index

EVIDENCE
Comparison methods for proving disruption, 23:1 to 23:4
Disruption, 18:4

EXCUSABLE DELAY
Adjusting contract completion date to account for excusable delay, 2:34
Excusable but not compensable, 1:3
INDEX

FEDERAL CONTRACTS
Delay vs. suspensions, 3:5
No damage for delay, 5:11

FLOAT
Critical Path Method (CPM), this index
Delay absorbing, 3:11

FORENSIC SCHEDULE ANALYSIS
AACE RP29R-03 Forensic Schedule Analysis, this index

GUIDELINES FOR SCHEDULE DELAY ANALYSIS
Checklist, 13:1
Details, 13:2

IMPACTED AS-PLANNED
Generally, 6:6, 10:1 to 10:9
Case summaries, 10:9
Example implementation
 global insertion, 10:5
 owner/contractor impacted schedules compared, 10:6
 stepped insertion, 10:7
Historical treatment
generally, 10:2
 early acceptance, 10:3
 suspicion, 10:4
Major delay types, treatment of, 10:8

IMPOSSIBILITY OF SCHEDULE
Generally, 3:15

INCENTIVE BONUS PAYMENTS
Generally, 3:7

INEFFICIENCY
Disruption, 18:3

INEXCUSABLE DELAY
Noncompensable, 1:4

LEONARD THESIS
Disruption, 21:34 to 21:36

LIQUIDATED DAMAGES
Delay damages, 4:13
 Inexcusable, noncompensable delay, 1:4

MEASURED MILE
Disruption, 19:1 to 19:9

MECHANICAL CONTRACTORS ASSOCIATION OF AMERICA FACTORS
Disruption, 21:12 to 21:24

METHOD COMPARISON STUDY
Generally, 12:1 to 12:3
Conclusions, 12:2
Global schedule delay method comparison, 12:5
Results, 12:1
Summary of International cases referencing schedule delay methods, 12:4
Summary of U.S. cases referencing schedule delay methods, 12:3

MITIGATION OF DAMAGES
Delay damages, 4:5

MODIFIED TOTAL COST
Disruption, 20:9 to 20:19

NATIONAL ELECTRICAL CONTRACTORS ASSOCIATION FACTORS
Disruption, 21:25 to 21:30

NO DAMAGE FOR DELAY
Generally, 5:1 to 5:11
Abandonment exception to contractual provisions, 5:7
Active interference exception to contractual provisions, 5:6
Common law exceptions to contractual provisions
generally, 5:4 to 5:9
 abandonment, 5:7
 active interference, 5:6
 material breach of contract, 5:9
 preference afforded to remedy granting provisions, 5:5
 unreasonable length of delay, 5:7
 waiver, 5:8
Contractual clauses, 5:3
Federal contracts, 5:11
Legislative responses, 5:10

Index-5
NO DAMAGE FOR DELAY
—Cont’d
Material breach of contract, exception to contractual provisions, 5:9
Preference afforded to remedy granting provisions, 5:5
Source of rule, 5:2
Unreasonable length of delay exception to contractual provisions, 5:7
Waiver, exception to contractual provisions, 5:7

NO FAULT
Excusable but not compensable delays, 1:3

OVERHEAD
Delay Damages, this index

PRODUCTIVITY
Disruption, this index

PRODUCTIVITY FACTORS
Disruption, this index

SCHEDULE CONTRACT SPECIFICATIONS AND RESPONSIBILITIES
Generally, 14:1 to 14:4
Best practices
contractor’s (or subcontractor’s) schedule, 14:4
owner’s (or owner’s agent’s) schedule administration, 14:3
Example provisions, 14:1
Recommended topics, 14:2

SCHEDULE IMPOSSIBILITY
Generally, 3:15

SHARED FAULT
Excusable but not compensable delays, 1:3

SOCIETY OF CONSTRUCTION LAW DELAY AND DISRUPTION PROTOCOL
—Cont’d
Comparison with industry standard, 16:9
Core principles, 16:2
Guidance sections, 16:3
Reversing protocol position on offsetting delay, 16:7, 16:8
Review, 16:4 to 16:9
Summary, 16:1

SUBCONTRACTORS
Owner changes, subcontractor harmed by, 2:36
Schedule contract specifications and responsibilities, best practices, 14:4

TIME IMPACT ANALYSIS (TIA)
Generally, 6:3, 7:1 to 7:14
Adjusted
generally, 7:2
example implementation, 7:3
judicial analysis, 7:4
Case summaries, 7:14
Prospective TIA
generally, 7:8
example implementation, 7:9
judicial analysis, 7:10
Wide windows
generally, 7:11
example implementation, 7:12
judicial analysis, 7:13
Windows (unadjusted)
generally, 7:5
example implementation, 7:6
judicial analysis, 7:7

TOTAL COST
Disruption, 20:20 to 20:27

TOTAL TIME
Generally, 6:7, 11:1 to 11:6
Case summaries, 11:6
Example implementation, 11:4
Total time and total cost method
generally, 11:2
historical treatment, 11:3
INDEX

TOTAL TIME—Cont’d
Treatment of major delay types, 11:5

TYPES OF DELAY
Generally, 1:1 to 1:4
Compensable delay, 1:2
Excusable but not compensable delays, 1:3
Inexcusable, noncompensable delay, 1:4

U.S. ARMY CORPS OF ENGINEERS MODIFICATION IMPACT EVALUATION GUIDE
Disruption, 21:31 to 21:33

VISUAL OBSERVATION JUDGMENT
Disruption, 22:37 to 22:10

WAIVER
Completion, waiver of, 3:16
No damage for delay, 5:8